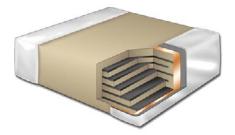


#### **Overview**

KEMET's COTS program is an extension of KEMET knowledge of high reliability test regimes and requirements. KEMET regularly supplies "up-screened" products by working with customer drawings and imposing specified design and test requirements. The COTS program offers the same high quality and high reliability components as up-screened products, but at a lower cost to the customer. This is accomplished by eliminating the need for customer-specific drawings to achieve the reliability level required for customer applications. A series of tests and inspections have been selected to provide the accelerated conditioning and 100% screening necessary to eliminate infant mortal failures from the population.


KEMET's COG dielectric features a 125°C maximum operating temperature and is considered "stable." The Electronics Components, Assemblies & Materials Association (EIA) characterizes COG dielectric as a Class I material. Components of this classification are temperature compensating and are suited for resonant circuit applications or those where Q and stability of capacitance characteristics are required. COG exhibits no change in capacitance with respect to time and voltage and boasts a negligible change in capacitance with reference to ambient

**Ordering Information** 

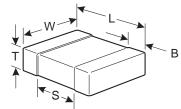
temperature. Capacitance change is limited to  $\pm 30 \text{ ppm/}^{\circ}\text{C}$  from -55°C to +125°C.

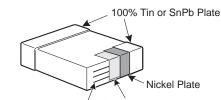
All COTS testing includes voltage conditioning and post-electrical testing as per MIL–PRF–55681. For enhanced reliability, KEMET also provides the following test level options and conformance certifications:





| С       | 1206                                                 | Т                        | 104                                                                                                                                            | K                                                                                                                                                                         | 5                                                                                  | G          | Α                                                                                                                                                                                                                                                     | С                                                | TU                                                                 |
|---------|------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|
| Ceramic | Case Size<br>(L" x W")                               | Specification/<br>Series | Capacitance<br>Code (pF)                                                                                                                       | Capacitance<br>Tolerance <sup>1</sup>                                                                                                                                     | Voltage                                                                            | Dielectric | Failure Rate/Design                                                                                                                                                                                                                                   | Termination<br>Finish <sup>2</sup>               | Packaging/Grade<br>(C-Spec) <sup>3</sup>                           |
|         | 0402<br>0603<br>0805<br>1206<br>1210<br>1812<br>2220 | T = COTS                 | 2 Significant<br>Digits + Number<br>of Zeros<br>Use 9 for<br>1.0 – 9.9 pF<br>Use 8 for<br>0.5 – .99 pF<br>ex. 2.2 pF = 229<br>ex. 0.5 pF = 508 | $B = \pm 0.10 \text{ pF}$<br>$C = \pm 0.25 \text{ pF}$<br>$D = \pm 0.5 \text{ pF}$<br>$F = \pm 1\%$<br>$G = \pm 2\%$<br>$J = \pm 5\%$<br>$K = \pm 10\%$<br>$M = \pm 20\%$ | 8 = 10 V<br>4 = 16 V<br>3 = 25 V<br>6 = 35 V<br>5 = 50 V<br>1 = 100 V<br>2 = 200 V | G = COG    | A = Group A Testing per<br>MIL-PRF-55681 PDA 8%<br>B= Group A Testing per<br>MIL-PRF-55681 PDA<br>8%, DPA per EIA-469<br>C = Group A Testing per<br>MIL-PRF-55681 PDA 8%,<br>DPA per EIA-469, Humidity<br>per MIL-STD-202, Method<br>103, Condition A | C = 100%<br>Matte Sn<br>L = SnPb (5%<br>minimum) | Blank = Bulk<br>TU = 7" Reel<br>Unmarked<br>TM = 7" Reel<br>Marked |


<sup>1</sup> Additional capacitance tolerance offerings may be available. Contact KEMET for details.


<sup>2</sup> Additional termination finish options may be available. Contact KEMET for details.

<sup>3</sup> Additional reeling or packaging options may be available. Contact KEMET for details.



### **Dimensions – Millimeters (Inches)**





Electrodes / Conductive Metalization

| EIA<br>Size<br>Code | Metric<br>Size<br>Code | L<br>Length               | W<br>Width                | T<br>Thickness  | B<br>Bandwidth            | S<br>Separation<br>Minimum | Mounting<br>Technique           |
|---------------------|------------------------|---------------------------|---------------------------|-----------------|---------------------------|----------------------------|---------------------------------|
| 0402                | 1005                   | 1.00 (.040) ± 0.05 (.002) | 0.50 (.020) ± 0.05 (.002) |                 | 0.30 (.012) ± 0.10 (.004) | 0.30 (.012)                | Solder Reflow Only              |
| 0603                | 1608                   | 1.60 (.063) ± 0.15 (.006) | 0.80 (.032) ± 0.15 (.006) |                 | 0.35 (.014) ± 0.15 (.006) | 0.70 (.028)                |                                 |
| 0805                | 2012                   | 2.00 (.079) ± 0.20 (.008) | 1.25 (.049) ± 0.20 (.008) | See Table 2 for | 0.50 (0.02) ± 0.25 (.010) | 0.75 (.030)                | Solder Wave or<br>Solder Reflow |
| 1206                | 3216                   | 3.20 (.126) ± 0.20 (.008) | 1.60 (.063) ± 0.20 (.008) |                 | 0.50 (0.02) ± 0.25 (.010) |                            |                                 |
| 1210                | 3225                   | 3.20 (.126) ± 0.20 (.008) | 2.50 (.098) ± 0.20 (.008) |                 | 0.50 (0.02) ± 0.25 (.010) | N1/A                       |                                 |
| 1812                | 4532                   | 4.50 (.177) ± 0.30 (.012) | 3.20 (.126) ± 0.30 (.012) | ,<br>           | 0.60 (.024) ± 0.35 (.014) | N/A                        | Solder Reflow Only              |
| 2220                | 5650                   | 5.70 (.224) ± 0.40 (.016) | 5.00 (.197) ± 0.40 (.016) |                 | 0.60 (.024) ± 0.35 (.014) |                            |                                 |

#### **Benefits**

- -55°C to +125°C operating temperature range
- Voltage conditioning and post-electrical testing per MIL-PRF-55681, Paragraph 4.8.3.1, Standard Voltage Conditioning
- Destructive Physical Analysis (DPA) per EIA-469
- Humidity, steady state, low voltage (85/85) per MIL–STD–202, Method 103, Condition A
- · Certificate of compliance
- RoHS Compliant (excluding SnPb end metallization option)
- EIA 0402, 0603, 0805, 1206, 1210, 1812, and 2220 case sizes
- DC voltage ratings of 10 V, 16 V, 25 V, 50 V, 100 V, and 200 V
- Capacitance offerings ranging from 0.5 pF up to 0.47 μF
- Available capacitance tolerances of ±0.10 pF, ±0.25 pF, ±0.5 pF, ±1%, ±2%, ±5%, ±10%, and ±20%

- · No piezoelectric noise
- Extremely low ESR and ESL
- · High thermal stability
- · High ripple current capability
- Preferred capacitance solution at line frequencies and into the MHz range
- · No capacitance change with respect to applied rated DC voltage
- Negligible capacitance change with respect to temperature
- · No capacitance decay with time
- · Non-polar device, minimizing installation concerns
- SnPb end metallization option available upon request (5% minimum)

# Applications

Typical applications include military, space quality and high reliability electronics.



# **Qualification/Certification**

Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance & Reliability.

#### **Environmental Compliance**

Pb-Free and RoHS Compliant.



# **Electrical Parameters/Characteristics**

| Item                                                               | Parameters/Characteristics                                                              |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Operating Temperature Range                                        | -55°C to +125°C                                                                         |
| Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC) | ±30 ppm/°C                                                                              |
| Aging Rate (Maximum % Capacitance Loss/Decade Hour)                | 0%                                                                                      |
| Dielectric Withstanding Voltage (DWV)                              | 250% of rated voltage<br>(5 ±1 seconds and charge/discharge not exceeding 50 mA)        |
| Dissipation Factor (DF) Maximum Limit @ 25°C                       | 0.1%                                                                                    |
| Insulation Resistance (IR) Limit @ 25°C                            | 1,000 megohm microfarads or 100 GΩ<br>(Rated voltage applied for 120 ±5 seconds @ 25°C) |

To obtain IR limit, divide  $M\Omega$ - $\mu$ F value by the capacitance and compare to G $\Omega$  limit. Select the lower of the two limits.

Capacitance and dissipation factor (DF) measured under the following conditions:

1 MHz ±100 kHz and 1.0 Vrms ±0.2 V if capacitance  $\leq$  1,000 pF

1 kHz  $\pm$ 50 Hz and 1.0 Vrms  $\pm$ 0.2 V if capacitance > 1,000 pF

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

#### **Post Environmental Limits**

|            | High Temperature Life, Biased Humidity, Moisture Resistance                                                                                                                 |     |     |                  |                      |  |  |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------------------|----------------------|--|--|--|--|--|--|--|--|
| Dielectric | Dielectric         Rated DC<br>Voltage         Capacitance<br>Value         Dissipation Factor<br>(Maximum %)         Capacitance<br>Shift         Insulation<br>Resistance |     |     |                  |                      |  |  |  |  |  |  |  |  |
| C0G        | All                                                                                                                                                                         | All | 0.5 | 0.3% or ±0.25 pF | 10% of Initial Limit |  |  |  |  |  |  |  |  |



# Table 1A – Capacitance Range/Selection Waterfall (0402 – 0805 Case Sizes)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                                                            | C04                                                                        | 402                                                                        |                      |     |                                                                                 |                                                                                 | C0(                                                                             | 503                                                                             |                                                                                 |                      |                                                                                 |                                                                                 | CO                                                                              | 805                                                                             |                                                                                 |                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------|-----|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|
| Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Сар                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Voltage Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                          | 4                                                                          | 3                                                                          | 5                                                                          | 1                    | 2   | 8                                                                               | 4                                                                               | 3                                                                               | 5                                                                               | 1                                                                               | 2                    | 8                                                                               | 4                                                                               | 3                                                                               | 5                                                                               | 1                                                                               | 2                                      |
| Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Voltage DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                         | 16                                                                         | 25                                                                         | 50                                                                         | 100                  | 200 | 10                                                                              | 16                                                                              | 25                                                                              | 50                                                                              | 100                                                                             | 200                  | 9                                                                               | 16                                                                              | 25                                                                              | 50                                                                              | 100                                                                             | 200                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Capacitance<br>Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |                                                                            |                                                                            |                                                                            |                      |     |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                      | s Co<br>nsior                                                                   |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                        |
| 0.50 - 0.75 pF<br>1.0 - 9.1 pF<br>10 - 91 pF<br>100 - 180 pF<br>200 - 430 pF<br>470 pF<br>510 - 820 pF<br>910 pF<br>1,000 pF<br>1,000 pF<br>1,200 pF<br>1,300 pF<br>1,600 pF<br>2,200 pF<br>2,200 pF<br>2,200 pF<br>2,200 pF<br>2,200 pF<br>3,000 pF<br>3,000 pF<br>3,000 pF<br>3,000 pF<br>3,000 pF<br>5,000 pF<br>5,000 pF<br>5,000 pF<br>6,200 pF<br>6,200 pF<br>6,200 pF<br>6,200 pF<br>6,200 pF<br>5,000 pF<br>12,000 pF<br>22,000 pF<br>22,000 pF<br>13,000 pF<br>12,000 pF<br>12,000 pF<br>13,000 pF<br>1 | 508 - 758           109 - 919           100 - 910           101 - 181           201 - 431           471           511 - 821           911           102           112           122           132           152           162           182           202           242           272           302           362           392           432           472           512           562           622           682           752           822           912           103           123           153           183           223           333 | B         C         D         F         G         J         K         M           F         G         J         K         M         F         G         J         K         M           F         G         J         K         M         F         G         J         K         M           F         G         J         K         M         F         G         J         K         M           F         G         J         K         M         F         G         J         K         M           F         G         J         K         M         F         G         J         K         M           F         G         J         K         M         F         G         J         K         M           F         G         J         K         M         F         G         J         K         M           F         G         J         K         M         F         G         J         K         M           F         G         J         K         M         F         G         J         K         M | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | BB<br>BB<br>BB<br>BB |     | CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>C | CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>C | CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>C | CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>C | CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>CB<br>C | CB<br>CB<br>CB<br>CB | DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>D | DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>D | DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>D | DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>D | DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DD<br>DD<br>DD<br>DD<br>DD<br>D | DC<br>DC<br>DC<br>DC<br>DD<br>DD<br>DD |
| 39,000 pF<br>47,000 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 393<br>473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F G J K M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            |                                                                            |                                                                            |                                                                            |                      |     |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                      | DG<br>DG                                                                        | DG<br>DG                                                                        | DG<br>DG                                                                        |                                                                                 |                                                                                 |                                        |
| 47,000 pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Voltage DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            | 16                                                                         | 25                                                                         | 50                                                                         | 100                  | 200 | 10                                                                              | 16                                                                              | 25                                                                              | 50                                                                              | 100                                                                             | 200                  | 10                                                                              | 16 0                                                                            | 25 6                                                                            | 50                                                                              | 100                                                                             | 200                                    |
| Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Сар                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Voltage Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 10                                                                       | 4                                                                          | 3                                                                          | 5                                                                          | 1                    | 2   | 8                                                                               | 4                                                                               | 3                                                                               | 5                                                                               | 1                                                                               | 2                    | 8                                                                               | 4                                                                               | 3                                                                               | 5                                                                               | 1                                                                               | ~ 2                                    |
| Capacitanoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                                                            | 4 3 5 1 2 8<br>C0402                                                       |                                                                            |                      |     | 8 4 3 5 1 2<br>C0603                                                            |                                                                                 |                                                                                 |                                                                                 | -                                                                               | Ļ                    | •                                                                               | -                                                                               | 8 4 3 5 1 2<br>C0805                                                            |                                                                                 |                                                                                 |                                        |

KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within the same form factor (configuration and dimensions).

These products are protected under US Patents 7,172,985 & 7,670,981, other patents pending, and any foreign counterparts.



# Table 1B – Capacitance Range/Selection Waterfall (1206 – 2220 Case Sizes)

|              |             | Series                   |    |    | C12 | 206 |     |     |    |    | C1 | 210           |     |     | (  | C181 | 2   | (  | C222 | 0   |
|--------------|-------------|--------------------------|----|----|-----|-----|-----|-----|----|----|----|---------------|-----|-----|----|------|-----|----|------|-----|
| Canacitanaa  | Cap         | Voltage Code             | 8  | 4  | 3   | 5   | 1   | 2   | 8  | 4  | 3  | 5             | 1   | 2   | 5  | 1    | 2   | 3  | 1    | 2   |
| Capacitance  | Code        | Voltage DC               | 10 | 16 | 25  | 50  | 100 | 200 | 10 | 16 | 25 | 50            | 100 | 200 | 50 | 100  | 200 | 50 | 100  | 200 |
|              |             | Capacitance<br>Tolerance |    |    |     |     |     |     |    |    |    | d Chi<br>hick |     |     |    |      |     |    |      |     |
| 1.0 – 9.1 pF | 109 – 919   | B C D                    | EB | EB | EB  | EB  | EB  | EB  | FB | FB | FB | FB            | FB  | FB  |    | ///3 |     |    |      |     |
| 10 – 91 pF   | 100 – 910   | F G J K M                | EB | EB | EB  | EB  | EB  | EB  | FB | FB | FB | FB            | FB  | FB  |    |      |     |    |      |     |
| 100 – 430 pF | 101 – 431   | F G J K M                | EB | EB | EB  | EB  | EB  | EB  | FB | FB | FB | FB            | FB  | FB  |    |      |     |    |      |     |
| 470 – 910 pF | 471 – 911   | F G J K M                | EB | EB | EB  | EB  | EB  | EB  | FB | FB | FB | FB            | FB  | FB  | GB | GB   | GB  |    |      |     |
| 1,000 pF     | 102         | F G J K M                | EB | EB | EB  | EB  | EB  | EE  | FB | FB | FB | FB            | FB  | FB  | GB | GB   | GB  |    |      |     |
| 1,100 pF     | 112         | F G J K M                | EB | EB | EB  | EB  | EB  | EB  | FB | FB | FB | FB            | FB  | FB  | GB | GB   | GB  |    |      |     |
| 1,200 pF     | 122         | F G J K M                | EB | EB | EB  | EB  | EB  | EB  | FB | FB | FB | FB            | FB  | FB  | GB | GB   | GB  |    |      |     |
| 1,300 pF     | 132         | F G J K M                | EB | EB | EB  | EB  | EC  | EC  | FB | FB | FB | FB            | FB  | FC  | GB | GB   | GB  |    |      |     |
| 1,500 pF     | 152         | F G J K M                | EB | EB | EB  | EB  | ED  | EC  | FB | FB | FB | FB            | FB  | FE  | GB | GB   | GB  |    |      |     |
| 1,600 pF     | 162         | F G J K M                | EB | EB | EB  | EB  | ED  | ED  | FB | FB | FB | FB            | FB  | FE  | GB | GB   | GB  |    |      |     |
| 1,800 pF     | 182         | F G J K M                | EB | EB | EB  | EB  | ED  | ED  | FB | FB | FB | FB            | FB  | FE  | GB | GB   | GB  |    |      |     |
| 2,000 pF     | 202         | F G J K M                | EB | EB | EB  | EB  | ED  | ED  | FB | FB | FB | FB            | FC  | FE  | GB | GB   | GB  |    |      |     |
| 2,200 pF     | 222         | F G J K M                | EB | EB | EB  | EB  | EE  | ED  | FB | FB | FB | FB            | FC  | FG  | GB | GB   | GB  |    |      |     |
| 2,400 pF     | 242         | F G J K M                | EB | EB | EB  | EB  | EC  | EC  | FB | FB | FB | FB            | FC  | FC  |    |      |     |    |      |     |
| 2,700 pF     | 272         | F G J K M                | EB | EB | EB  | EB  | EC  | EC  | FB | FB | FB | FB            | FC  | FC  | GB | GB   | GB  |    |      |     |
| 3,000 pF     | 302         | F G J K M                | EC | EC | EC  | EC  | EC  |     | FB | FB | FB | FB            | FC  | FF  |    |      |     |    |      |     |
| 3,300 pF     | 332         | F G J K M                | EC | EC | EC  | EC  | EE  |     | FB | FB | FB | FB            | FF  | FF  | GB | GB   | GB  |    |      |     |
| 3,600 pF     | 362         | F G J K M                | EC | EC | EC  | EC  | EE  |     | FB | FB | FB | FB            | FF  | FF  |    |      |     |    |      |     |
| 3,900 pF     | 392         | F G J K M                | EC | EC | EC  | EC  | EF  |     | FB | FB | FB | FB            | FF  | FF  | GB | GB   | GB  |    |      |     |
| 4,300 pF     | 432         | F G J K M                | EC | EC | EC  | EC  | EC  |     | FB | FB | FB | FB            | FF  | FG  |    |      |     |    |      |     |
| 4,700 pF     | 472         | F G J K M                | EC | EC | EC  | EC  | EC  |     | FF | FF | FF | FF            | FG  | FG  | GB | GB   | GD  |    |      |     |
| 5,100 pF     | 512         | F G J K M                | ED | ED | ED  | ED  | ED  |     | FB | FB | FB | FB            | FG  | FG  |    |      |     |    |      |     |
| 5,600 pF     | 562         | F G J K M                | ED | ED | ED  | ED  | ED  |     | FB | FB | FB | FB            | FG  |     | GB | GB   | GH  |    |      |     |
| 6,200 pF     | 622         | F G J K M                | EB | EB | EB  | EB  | EB  |     | FB | FB | FB | FB            | FG  |     |    |      |     |    |      |     |
| 6,800 pF     | 682         | F G J K M                | EB | EB | EB  | EB  | EB  |     | FB | FB | FB | FB            | FG  |     | GB | GB   | GJ  | JE | JE   |     |
| 7,500 pF     | 752         | F G J K M                | EB | EB | EB  | EB  | EB  |     | FC | FC | FC | FC            | FC  |     |    |      |     |    |      |     |
| 8,200 pF     | 822         | F G J K M                | EC | EC | EC  | EC  | EB  |     | FC | FC | FC | FC            | FC  |     | GB | GH   |     | JE | JE   |     |
| 9,100 pF     | 912         | F G J K M                | EC | EC | EC  | EC  | EB  |     | FE | FE | FE | FE            | FE  |     |    |      |     |    |      |     |
| 10,000 pF    | 103         | F G J K M                | ED | ED | ED  | ED  | EB  |     | FF | FF | FF | FF            | FF  |     | GB | GH   |     | JE | JE   |     |
| 12,000 pF    | 123         | F G J K M                | EB | EB | EB  | EB  | EB  |     | FG | FG | FG | FG            | FB  |     | GB | GG   |     | JE | JE   |     |
| 15,000 pF    | 153         | F G J K M                | EB | EB | EB  | EB  | EB  |     | FG | FG | FG | FG            | FB  |     | GB | GB   |     | JE | JE   |     |
| 18,000 pF    | 183         | F G J K M                | EB | EB | EB  | EB  | EB  |     | FB | FB | FB | FB            | FB  |     | GB | GB   |     | JE | JE   |     |
| 22,000 pF    | 223         | F G J K M                | EB | EB | EB  | EB  | EC  |     | FB | FB | FB | FB            | FB  |     | GB | GB   |     | JE | JB   |     |
| 27,000 pF    | 273         | F G J K M                | EB | EB | EB  | EB  | EE  |     | FB | FB | FB | FB            | FB  |     | GB | GB   |     | JE | JB   |     |
| 33,000 pF    | 333         | F G J K M                | EB | EB | EB  | EB  | EE  |     | FB | FB | FB | FB            | FB  |     | GB | GB   |     | JB | JB   |     |
| 39,000 pF    | 393         | F G J K M                | EC | EC | EC  | EE  | EH  |     | FB | FB | FB | FB            | FE  |     | GB | GB   |     | JB | JB   |     |
| 47,000 pF    | 473         | F G J K M                | EC | EC | EC  | EE  | EH  |     | FB | FB | FB | FB            | FE  |     | GB | GB   |     | JB | JB   |     |
| 56,000 pF    | 563         | F G J K M                | ED | ED | ED  | EF  |     |     | FB | FB | FB | FB            | FF  |     | GB | GB   |     | JB | JB   |     |
| 68,000 pF    | 683         | F G J K M                | EF | EF | EF  | EH  |     |     | FB | FB | FB | FC            | FG  |     | GB | GB   |     | JB | JB   |     |
| 82,000 pF    | 823         | F G J K M                | EH | EH | EH  | EH  |     |     | FC | FC | FC | FF            | FH  |     | GB | GB   |     | JB | JB   |     |
| 0.10 µF      | 104         | F G J K M                | EH | EH | EH  |     |     |     | FE | FE | FE | FG            | FM  |     | GB | GD   |     | JB | JB   |     |
| 0.12 µF      | 124         |                          |    |    |     |     |     |     | FG | FG | FG | FH            |     |     | GB | GH   |     | JB | JB   |     |
| 0.15 µF      | 154         |                          |    |    |     |     |     |     | FH | FH | FH | FM            |     |     | GD | GN   |     | JB | JB   |     |
| 0.18 µF      | 184         |                          |    |    |     |     |     |     | FJ | FJ | FJ |               |     |     | GH |      |     | JB | JD   |     |
| 0.22 µF      | 224         |                          |    |    |     |     |     |     | FK | FK | FK |               |     |     | GK |      |     | JB | JD   |     |
| 0.27 µF      | 274         |                          |    |    |     |     |     |     |    |    |    |               |     |     |    |      |     | JB | JF   |     |
| 0.33 µF      | 334         |                          |    |    |     |     |     |     |    |    |    |               |     |     |    |      |     | JD | JG   |     |
| 0.39 µF      | 394         |                          |    |    |     |     |     |     |    |    |    |               |     |     |    |      |     | JG |      |     |
| 0.47 µF      | 474         |                          |    |    |     |     |     |     |    |    |    |               |     |     |    |      |     | JG |      |     |
| r l          |             | Voltage DC               | 10 | 16 | 25  | 50  | 100 | 200 | 10 | 16 | 25 | 50            | 100 | 200 | 50 | 100  | 200 | 50 | 100  | 200 |
| Capacitance  | Cap<br>Code | Voltage Code             | 8  | 4  | 3   | 5   | 1   | 2   | 8  | 4  | 3  | 5             | 1   | 2   | 5  | 1    | 2   | 3  | 1    | 2   |
|              |             | Series                   |    |    | C12 | 206 |     |     |    |    | C1 | 210           |     |     |    | C181 | 2   |    | C222 | 0   |

KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within the same form factor (configuration and dimensions).

These products are protected under US Patents 7,172,985 & 7,670,981, other patents pending, and any foreign counterparts.

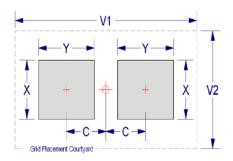


## Table 2 – Chip Thickness/Packaging Quantities

| Thickness | Case | Thickness ±     | Paper C | Quantity | Plastic (        | Quantity |  |  |  |
|-----------|------|-----------------|---------|----------|------------------|----------|--|--|--|
| Code      | Size | Range (mm)      | 7" Reel | 13" Reel | 7" Reel          | 13" Reel |  |  |  |
| BB        | 0402 | 0.50 ± 0.05     | 10,000  | 50,000   | 0                | 0        |  |  |  |
| CB        | 0603 | 0.80 ± 0.07     | 4,000   | 10,000   | 0                | 0        |  |  |  |
| DC        | 0805 | 0.78 ± 0.10     | 4,000   | 10,000   | 0                | 0        |  |  |  |
| DD        | 0805 | 0.90 ± 0.10     | 4,000   | 10,000   | 0                | 0        |  |  |  |
| DE        | 0805 | 1.00 ± 0.10     | 0       | 0        | 2,500            | 10,000   |  |  |  |
| DF        | 0805 | 1.10 ± 0.10     | 0       | 0        | 2,500            | 10,000   |  |  |  |
| DG        | 0805 | 1.25 ± 0.15     | 0       | 0        | 2,500            | 10,000   |  |  |  |
| EB        | 1206 | 0.78 ± 0.10     | 4,000   | 10,000   | 4,000            | 10,000   |  |  |  |
| EC        | 1206 | 0.90 ± 0.10     | 0       | 0        | 4,000            | 10,000   |  |  |  |
| ED        | 1206 | 1.00 ± 0.10     | 0       | 0        | 2,500            | 10,000   |  |  |  |
| EE        | 1206 | 1.10 ± 0.10     | 0       | 0        | 2,500            | 10,000   |  |  |  |
| EF        | 1206 | 1.20 ± 0.15     | 0       | 0        | 2,500            | 10,000   |  |  |  |
| EH        | 1206 | 1.60 ± 0.20     | 0       | 0        | 2,000            | 8,000    |  |  |  |
| FB        | 1210 | 0.78 ± 0.10     | 0       | 0        | 4,000            | 10,000   |  |  |  |
| FC        | 1210 | 0.90 ± 0.10     | 0       | 0        | 4,000            | 10,000   |  |  |  |
| FE        | 1210 | 1.00 ± 0.10     | 0       | 0        | 2,500            | 10,000   |  |  |  |
| FF        | 1210 | 1.10 ± 0.10     | 0       | 0        | 2,500            | 10,000   |  |  |  |
| FG        | 1210 | 1.25 ± 0.15     | 0       | 0        | 2,500            | 10,000   |  |  |  |
| FH        | 1210 | 1.55 ± 0.15     | 0       | 0        | 2,000            | 8,000    |  |  |  |
| GB        | 1812 | 1.00 ± 0.10     | 0       | 0        | 1,000            | 4,000    |  |  |  |
| GD        | 1812 | $1.25 \pm 0.15$ | 0       | 0        | 1,000            | 4,000    |  |  |  |
| GH        | 1812 | $1.40 \pm 0.15$ | 0       | 0        | 1,000            | 4,000    |  |  |  |
| GG        | 1812 | $1.55 \pm 0.10$ | 0       | 0        | 1,000            | 4,000    |  |  |  |
| GJ        | 1812 | $1.70 \pm 0.15$ | 0       | 0        | 1,000            | 4,000    |  |  |  |
| JB        | 2220 | $1.00 \pm 0.15$ | 0       | 0        | 1,000            | 4,000    |  |  |  |
| JE        | 2220 | 1.40 ± 0.15     | 0       | 0        | 1,000            | 4,000    |  |  |  |
| Thickness | Case | Thickness ±     | 7" Reel | 13" Reel | 7" Reel          | 13" Reel |  |  |  |
| Code      | Size | Range (mm)      | Paper G | luantity | Plastic Quantity |          |  |  |  |

Package quantity based on finished chip thickness specifications.




#### Table 3 – Chip Capacitor Land Pattern Design Recommendations per IPC-7351

| EIA<br>Size<br>Code | Metric<br>Size<br>Code |      | Density Level A:<br>Maximum (Most)<br>Land Protrusion (mm) |      |      |      |      | Density Level B:<br>Median (Nominal)<br>Land Protrusion (mm) |      |      |      |      | Density Level C:<br>Minimum (Least)<br>Land Protrusion (mm) |      |      |      |  |
|---------------------|------------------------|------|------------------------------------------------------------|------|------|------|------|--------------------------------------------------------------|------|------|------|------|-------------------------------------------------------------|------|------|------|--|
| Couc                | Couc                   | С    | Y                                                          | Х    | V1   | V2   | С    | Y                                                            | Х    | V1   | V2   | С    | Y                                                           | Х    | V1   | V2   |  |
| 0402                | 1005                   | 0.50 | 0.72                                                       | 0.72 | 2.20 | 1.20 | 0.45 | 0.62                                                         | 0.62 | 1.90 | 1.00 | 0.40 | 0.52                                                        | 0.52 | 1.60 | 0.80 |  |
| 0603                | 1608                   | 0.90 | 1.15                                                       | 1.10 | 4.00 | 2.10 | 0.80 | 0.95                                                         | 1.00 | 3.10 | 1.50 | 0.60 | 0.75                                                        | 0.90 | 2.40 | 1.20 |  |
| 0805                | 2012                   | 1.00 | 1.35                                                       | 1.55 | 4.40 | 2.60 | 0.90 | 1.15                                                         | 1.45 | 3.50 | 2.00 | 0.75 | 0.95                                                        | 1.35 | 2.80 | 1.70 |  |
| 1206                | 3216                   | 1.60 | 1.35                                                       | 1.90 | 5.60 | 2.90 | 1.50 | 1.15                                                         | 1.80 | 4.70 | 2.30 | 1.40 | 0.95                                                        | 1.70 | 4.00 | 2.00 |  |
| 1210                | 3225                   | 1.60 | 1.35                                                       | 2.80 | 5.65 | 3.80 | 1.50 | 1.15                                                         | 2.70 | 4.70 | 3.20 | 1.40 | 0.95                                                        | 2.60 | 4.00 | 2.90 |  |
| 1210 <sup>1</sup>   | 3225                   | 1.50 | 1.60                                                       | 2.90 | 5.60 | 3.90 | 1.40 | 1.40                                                         | 2.80 | 4.70 | 3.30 | 1.30 | 1.20                                                        | 2.70 | 4.00 | 3.00 |  |
| 1812                | 4532                   | 2.15 | 1.60                                                       | 3.60 | 6.90 | 4.60 | 2.05 | 1.40                                                         | 3.50 | 6.00 | 4.00 | 1.95 | 1.20                                                        | 3.40 | 5.30 | 3.70 |  |
| 2220                | 5650                   | 2.75 | 1.70                                                       | 5.50 | 8.20 | 6.50 | 2.65 | 1.50                                                         | 5.40 | 7.30 | 5.90 | 2.55 | 1.30                                                        | 5.30 | 6.60 | 5.60 |  |

<sup>1</sup> Only for capacitance values  $\geq$  22  $\mu$ F

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805, and 1206 case sizes.

Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. Density Level C: For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC–7351).



#### **Soldering Process**

Recommended Soldering Technique:

- Solder wave or solder reflow for EIA case sizes 0603, 0805, and 1206
- All other EIA case sizes are limited to solder reflow only

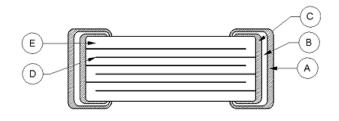
Recommended Soldering Profile:

• KEMET recommends following the guidelines outlined in IPC/JEDEC J-STD-020



# Table 4 – Performance & Reliability: Test Methods and Conditions

| Stress                 | Reference                          | Test or Inspection Method                                                                                                                                                                                                                         |
|------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Terminal Strength      | JIS-C-6429                         | Appendix 1, Note: Force of 1.8 kg for 60 seconds.                                                                                                                                                                                                 |
| Board Flex             | JIS-C-6429                         | Appendix 2, Note: Standard termination system – 2.0 mm (minimum) for all except 3 mm for C0G. Flexible termination system – 3.0 mm (minimum).                                                                                                     |
|                        |                                    | Magnification 50 X. Conditions:                                                                                                                                                                                                                   |
| Solderability          | J-STD-002                          | a) Method B, 4 hours @ 155°C, dry heat @ 235°C                                                                                                                                                                                                    |
| Solderability          | J-STD-002                          | b) Method B @ 215°C category 3                                                                                                                                                                                                                    |
|                        |                                    | c) Method D, category 3 @ 260°C                                                                                                                                                                                                                   |
| Temperature Cycling    | JESD22 Method JA-104               | 1,000 Cycles (-55°C to +125°C). Measurement at 24 hours +/- 2 hours after test conclusion.                                                                                                                                                        |
| Biased Humidity        | MIL-STD-202 Method 103             | Load Humidity: 1,000 hours 85°C/85% RH and rated voltage. Add 100 K ohm resistor. Measurement at 24 hours +/- 2 hours after test conclusion.<br>Low Volt Humidity: 1,000 hours 85°C/85% RH and 1.5 V. Add 100 K ohm resistor.                     |
| Moisture Resistance    | MIL-STD-202 Method 106             | Measurement at 24 hours +/- 2 hours after test conclusion.<br>t = 24 hours/cycle. Steps 7a and 7b not required. Unpowered.<br>Measurement at 24 hours +/- 2 hours after test conclusion.                                                          |
| Thermal Shock          | MIL-STD-202 Method 107             | -55°C/+125°C. Note: Number of cycles required – 300, maximum transfer time – 20 seconds, dwell time – 15 minutes. Air – Air.                                                                                                                      |
| High Temperature Life  | MIL-STD-202 Method 108<br>/EIA-198 | 1,000 hours at 125°C (85°C for X5R, Z5U and Y5V) with 2 X rated voltage applied.                                                                                                                                                                  |
| Storage Life           | MIL-STD-202 Method 108             | 150°C, 0 VDC for 1,000 hours.                                                                                                                                                                                                                     |
| Vibration              | MIL-STD-202 Method 204             | 5 g's for 20 min., 12 cycles each of 3 orientations. Note: Use 8" X 5" PCB 0.031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10 – 2,000 Hz |
| Mechanical Shock       | MIL-STD-202 Method 213             | Figure 1 of Method 213, Condition F.                                                                                                                                                                                                              |
| Resistance to Solvents | MIL-STD-202 Method 215             | Add aqueous wash chemical, OKEM Clean or equivalent.                                                                                                                                                                                              |


#### Storage and Handling

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature– reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt.



## Construction

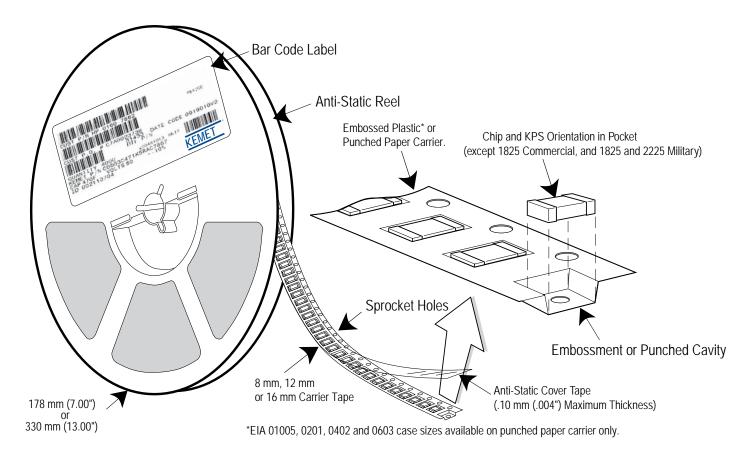
| Reference | lt                    | em                 | Material      |
|-----------|-----------------------|--------------------|---------------|
| А         | Termination<br>System | Finish             | 100% Matte Sn |
| В         |                       | Barrier Layer      | Ni            |
| С         |                       | Base Metal         | Cu            |
| D         | Inner E               | Electrode          | Ni            |
| E         | Dielectri             | CaZrO <sub>3</sub> |               |



Note: Image is exaggerated in order to clearly identify all components of construction.

# Capacitor Marking (Optional):

Laser marking option is not available on:


- C0G, Ultra Stable X8R and Y5V dielectric devices
- EIA 0402 case size devices
- EIA 0603 case size devices with Flexible Termination option.
- KPS Commercial and Automotive grade stacked devices.

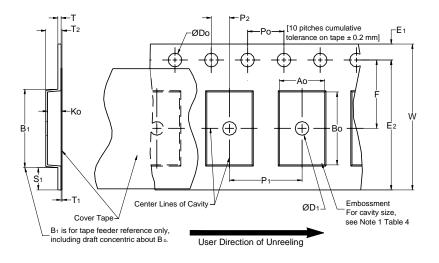
These capacitors are supplied unmarked only.



#### Tape & Reel Packaging Information

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.




#### Table 5 – Carrier Tape Configuration – Embossed Plastic & Punched Paper (mm)

| EIA Case Size     | Tape Size (W)* | Pitch (P <sub>1</sub> )* |
|-------------------|----------------|--------------------------|
| 01005 – 0402      | 8              | 2                        |
| 0603 – 1210       | 8              | 4                        |
| 1805 – 1808       | 12             | 4                        |
| ≥ 1812            | 12             | 8                        |
| KPS 1210          | 12             | 8                        |
| KPS 1812 & 2220   | 16             | 12                       |
| Array 0508 & 0612 | 8              | 4                        |

\*Refer to Figures 1 & 2 for W and  $P_{\gamma}$  carrier tape reference locations. \*Refer to Tables 6 & 7 for tolerance specifications.



# Figure 1 – Embossed (Plastic) Carrier Tape Dimensions



# Table 6 – Embossed (Plastic) Carrier Tape Dimensions

Metric will govern

|           |                                       |                                  | Constant Dim                 | ensions — Mi                | llimeters (Incl              | nes)                      |                                  |                                |                           |  |
|-----------|---------------------------------------|----------------------------------|------------------------------|-----------------------------|------------------------------|---------------------------|----------------------------------|--------------------------------|---------------------------|--|
| Tape Size | D <sub>0</sub>                        | D <sub>1</sub> Minimum<br>Note 1 | E <sub>1</sub>               | P <sub>0</sub>              | P <sub>2</sub>               | R Reference<br>Note 2     | S <sub>1</sub> Minimum<br>Note 3 | T<br>Maximum                   | T <sub>1</sub><br>Maximum |  |
| 8 mm      |                                       | 1.0<br>(0.039)                   |                              |                             |                              | 25.0<br>(0.984)           |                                  |                                |                           |  |
| 12 mm     | 1.5 +0.10/-0.0<br>(0.059 +0.004/-0.0) | 1.5                              | 1.75 ±0.10<br>(0.069 ±0.004) | 4.0 ±0.10<br>(0.157 ±0.004) | 2.0 ±0.05<br>(0.079 ±0.002)  | 30                        | 0.600<br>(0.024)                 | 0.600<br>(0.024)               | 0.100<br>(0.004)          |  |
| 16 mm     |                                       | (0.059)                          |                              |                             |                              | (1.181)                   |                                  |                                |                           |  |
|           |                                       |                                  | Variable Dime                | ensions — Mil               | limeters (Inch               | ies)                      |                                  |                                |                           |  |
| Tape Size | Pitch                                 | B <sub>1</sub> Maximum<br>Note 4 | E <sub>2</sub><br>Minimum    | F                           | P <sub>1</sub>               | T <sub>2</sub><br>Maximum | W<br>Maximum                     | A <sub>0</sub> ,B <sub>0</sub> | & K <sub>0</sub>          |  |
| 8 mm      | Single (4 mm)                         | 4.35<br>(0.171)                  | 6.25<br>(0.246)              | 3.5 ±0.05<br>(0.138 ±0.002) | 4.0 ±0.10<br>(0.157 ±0.004)  | 2.5<br>(0.098)            | 8.3<br>(0.327)                   |                                |                           |  |
| 12 mm     | Single (4 mm) &<br>Double (8 mm)      | 8.2<br>(0.323)                   | 10.25<br>(0.404)             | 5.5 ±0.05<br>(0.217 ±0.002) | 8.0 ±0.10<br>(0.315 ±0.004)  | 4.6<br>(0.181)            | 12.3<br>(0.484)                  | Not                            | e 5                       |  |
| 16 mm     | Triple (12 mm)                        | 12.1<br>(0.476)                  | 14.25<br>(0.561)             | 7.5 ±0.05<br>(0.138 ±0.002) | 12.0 ±0.10<br>(0.157 ±0.004) | 4.6<br>(0.181)            | 16.3<br>(0.642)                  |                                |                           |  |

1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.

2. The tape with or without components shall pass around R without damage (see Figure 6).

3. If S<sub>1</sub> < 1.0 mm, there may not be enough area for cover tape to be properly applied (see EIA Standard 481 paragraph 4.3 section b).

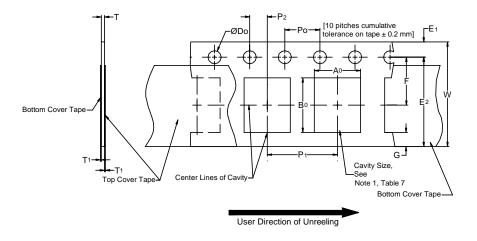
4. B, dimension is a reference dimension for tape feeder clearance only.

5. The cavity defined by  $A_{\alpha}$ ,  $B_{\alpha}$  and  $K_{\alpha}$  shall surround the component with sufficient clearance that:

(a) the component does not protrude above the top surface of the carrier tape.

(b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

(c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3).


(d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4).

(e) for KPS Series product,  $A_0$  and  $B_0$  are measured on a plane 0.3 mm above the bottom of the pocket.

(f) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.



# Figure 2 – Punched (Paper) Carrier Tape Dimensions



# Table 7 – Punched (Paper) Carrier Tape Dimensions

Metric will govern

| Constant Dimensions — Millimeters (Inches) |                                            |                              |                             |                             |                         |                 |                               |
|--------------------------------------------|--------------------------------------------|------------------------------|-----------------------------|-----------------------------|-------------------------|-----------------|-------------------------------|
| Tape Size                                  | D <sub>0</sub>                             | E <sub>1</sub>               | P <sub>0</sub>              | P <sub>2</sub>              | T <sub>1</sub> Maximum  | G Minimum       | R Reference<br>Note 2         |
| 8 mm                                       | 1.5 +0.10 -0.0<br>(0.059 +0.004 -0.0)      | 1.75 ±0.10<br>(0.069 ±0.004) | 4.0 ±0.10<br>(0.157 ±0.004) | 2.0 ±0.05<br>(0.079 ±0.002) | 0.10<br>(0.004) Maximum | 0.75<br>(0.030) | 25<br>(0.984)                 |
|                                            | Variable Dimensions — Millimeters (Inches) |                              |                             |                             |                         |                 |                               |
| Tape Size                                  | Pitch                                      | E2 Minimum                   | F                           | P <sub>1</sub>              | T Maximum               | W Maximum       | A <sub>0</sub> B <sub>0</sub> |
| 8 mm                                       | Half (2 mm)                                | 6.25                         | 3.5 ±0.05                   | 2.0 ±0.05<br>(0.079 ±0.002) | 1.1                     | 8.3<br>(0.327)  | Note 1                        |
| 8 mm                                       | Single (4 mm)                              | (0.246)                      | (0.138 ±0.002)              | 4.0 ±0.10<br>(0.157 ±0.004) | (0.098)                 | 8.3<br>(0.327)  | NOLE I                        |

1. The cavity defined by  $A_{\alpha} B_{\alpha}$  and T shall surround the component with sufficient clearance that:

a) the component does not protrude beyond either surface of the carrier tape.

b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

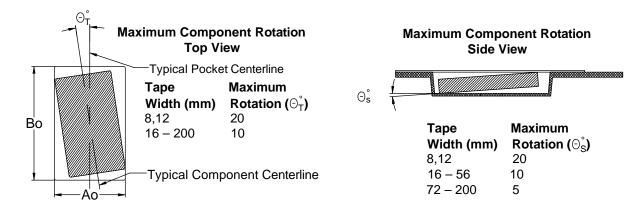
c) rotation of the component is limited to 20° maximum (see Figure 3).

d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4).

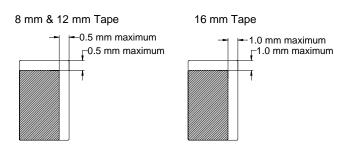
e) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.

2. The tape with or without components shall pass around R without damage (see Figure 6).

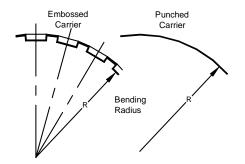



#### Packaging Information Performance Notes

- 1. Cover Tape Break Force: 1.0 Kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

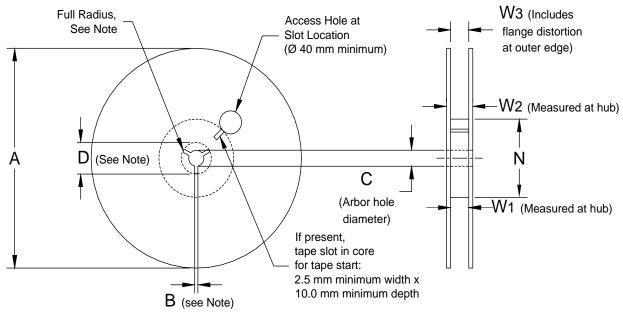

| Tape Width   | Peel Strength                    |
|--------------|----------------------------------|
| 8 mm         | 0.1 to 1.0 Newton (10 to 100 gf) |
| 12 and 16 mm | 0.1 to 1.3 Newton (10 to 130 gf) |

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be  $165^{\circ}$  to  $180^{\circ}$  from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of  $300 \pm 10$  mm/minute. 3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards* 556 and 624.


#### Figure 3 – Maximum Component Rotation



#### Figure 4 – Maximum Lateral Movement




#### Figure 5 – Bending Radius

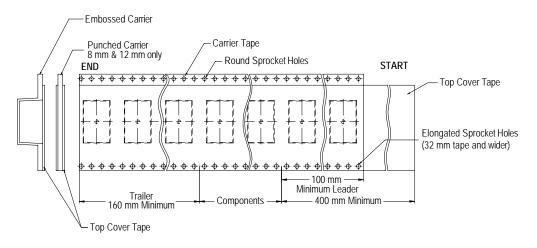




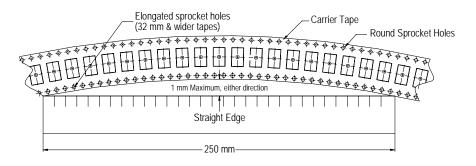
#### Figure 6 – Reel Dimensions



Note: Drive spokes optional; if used, dimensions B and D shall apply.

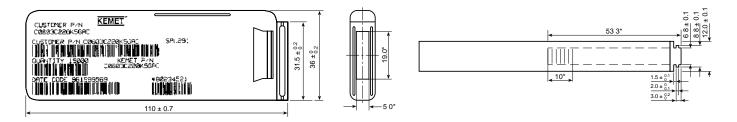

#### Table 8 – Reel Dimensions

Metric will govern


| Constant Dimensions — Millimeters (Inches) |                              |                                       |                                        |                                                   |  |
|--------------------------------------------|------------------------------|---------------------------------------|----------------------------------------|---------------------------------------------------|--|
| Tape Size                                  | А                            | B Minimum                             | С                                      | D Minimum                                         |  |
| 8 mm                                       | 178 ±0.20                    |                                       |                                        |                                                   |  |
| 12 mm                                      | (7.008 ±0.008)               | 1.5<br>(0.059)                        | 13.0 +0.5/-0.2<br>(0.521 +0.02/-0.008) | 20.2<br>(0.795)                                   |  |
| 16 mm                                      | 330 ±0.20<br>(13.000 ±0.008) | ()                                    |                                        | (                                                 |  |
|                                            | Variable                     | Dimensions — Millimeter               | s (Inches)                             |                                                   |  |
| Tape Size                                  | N Minimum                    | W <sub>1</sub>                        | W <sub>2</sub> Maximum                 | W <sub>3</sub>                                    |  |
| 8 mm                                       |                              | 8.4 +1.5/-0.0<br>(0.331 +0.059/-0.0)  | 14.4<br>(0.567)                        |                                                   |  |
| 12 mm                                      | 50<br>(1.969)                | 12.4 +2.0/-0.0<br>(0.488 +0.078/-0.0) | 18.4<br>(0.724)                        | Shall accommodate tape width without interference |  |
| 16 mm                                      |                              | 16.4 +2.0/-0.0<br>(0.646 +0.078/-0.0) | 22.4<br>(0.882)                        |                                                   |  |



# Figure 7 – Tape Leader & Trailer Dimensions




#### Figure 8 – Maximum Camber



# Bulk Cassette Packaging (Ceramic Chips Only)

Meets Dimensional Requirements IEC–286 and EIAJ 7201 Unit mm \*Reference



#### Capacitor Dimensions for Bulk Cassette

Cassette Packaging - Millimeters

| EIA Size<br>Code | Metric Size<br>Code | L Length  | W Width   | B Bandwidth | S Separation<br>Minimum | T Thickness | Number of<br>Pieces/Cassette |
|------------------|---------------------|-----------|-----------|-------------|-------------------------|-------------|------------------------------|
| 0402             | 1005                | 1.0 ±0.05 | 0.5 ±0.05 | 0.2 to 0.4  | 0.3                     | 0.5 ±0.05   | 50,000                       |
| 0603             | 1608                | 1.6 ±0.07 | 0.8 ±0.07 | 0.2 to 0.5  | 0.7                     | 0.8 ±0.07   | 15,000                       |

© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com

Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) Commercial Off-the-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 200 VDC



#### KEMET Corporation World Headquarters

2835 KEMET Way Simpsonville, SC 29681

Mailing Address: P.O. Box 5928 Greenville, SC 29606

www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

#### **Corporate Offices**

Fort Lauderdale, FL Tel: 954-766-2800

#### North America

Southeast Lake Mary, FL Tel: 407-855-8886

Northeast Wilmington, MA Tel: 978-658-1663

Central Novi, MI Tel: 248-994-1030

West Milpitas, CA Tel: 408-433-9950

Mexico Guadalajara, Jalisco Tel: 52-33-3123-2141

#### Europe

Southern Europe Paris, France Tel: 33-1-4646-1006

Sasso Marconi, Italy Tel: 39-051-939111

Central Europe Landsberg, Germany Tel: 49-8191-3350800

Kamen, Germany Tel: 49-2307-438110

Northern Europe Bishop's Stortford, United Kingdom Tel: 44-1279-460122

Espoo, Finland Tel: 358-9-5406-5000

#### Asia

Northeast Asia Hong Kong Tel: 852-2305-1168

Shenzhen, China Tel: 86-755-2518-1306

Beijing, China Tel: 86-10-5829-1711

Shanghai, China Tel: 86-21-6447-0707

Taipei, Taiwan Tel: 886-2-27528585

Southeast Asia Singapore Tel: 65-6586-1900

Penang, Malaysia Tel: 60-4-6430200

Bangalore, India Tel: 91-806-53-76817

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.



#### **Other KEMET Resources**

| Tools                          |                                |  |  |  |
|--------------------------------|--------------------------------|--|--|--|
| Resource                       | Location                       |  |  |  |
| Configure A Part: CapEdge      | http://capacitoredge.kemet.com |  |  |  |
| SPICE & FIT Software           | http://www.kemet.com/spice     |  |  |  |
| Search Our FAQs: KnowledgeEdge | http://www.kemet.com/keask     |  |  |  |
| Electrolytic LifeCalculator    | http://www.kemet.com:8080/elc  |  |  |  |

| Product Information                                  |                                       |  |  |  |
|------------------------------------------------------|---------------------------------------|--|--|--|
| Resource                                             | Location                              |  |  |  |
| Products                                             | http://www.kemet.com/products         |  |  |  |
| Technical Resources (Including Soldering Techniques) | http://www.kemet.com/technicalpapers  |  |  |  |
| RoHS Statement                                       | http://www.kemet.com/rohs             |  |  |  |
| Quality Documents                                    | http://www.kemet.com/qualitydocuments |  |  |  |

| Product Request         |                             |  |  |
|-------------------------|-----------------------------|--|--|
| Resource                | Location                    |  |  |
| Sample Request          | http://www.kemet.com/sample |  |  |
| Engineering Kit Request | http://www.kemet.com/kits   |  |  |

| Contact            |                                    |  |  |  |
|--------------------|------------------------------------|--|--|--|
| Resource           | Location                           |  |  |  |
| Website            | www.kemet.com                      |  |  |  |
| Contact Us         | http://www.kemet.com/contact       |  |  |  |
| Investor Relations | http://www.kemet.com/ir            |  |  |  |
| Call Us            | 1-877-MyKEMET                      |  |  |  |
| Twitter            | http://twitter.com/kemetcapacitors |  |  |  |

#### Disclaimer

All product specifications, statements, information and data (collectively, the "Information") are subject to change without notice.

All Information given herein is believed to be accurate and reliable, but is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on our knowledge of typical operating conditions for such applications, but are not intended to constitute – and we specifically disclaim – any warranty concerning suitability for a specific customer application or use. This Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by us with reference to the use of our products is given gratis, and we assume no obligation or liability for the advice given or results obtained.

Although we design and manufacture our products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated or that other measures may not be required.

