Safety Standard Recognized, 900 Series, Radial Disc, Encapsulated, AC Type, X1 440 VAC/Y2 300 VAC (Industrial Grade)

Overview

KEMET's 900 Series encapsulated radial through-hole ceramic disc capacitors are specifically designed for interferencesuppression AC line filtering applications. Having internationally recognized safety certifications, these capacitors are well-suited for applications that require keeping potentially disruptive or damaging line transients and EMI out of susceptible equipment. They are also an ideal solution in situations where there is a need to suppress line disturbances at the source.

Safety Certified Capacitors are classified as either X and/or Y capacitors. Class X capacitors are primarily used in line-toline (across-the-line) applications. In this application there is no danger of electric shock to humans should the capacitor fail, but could result in a risk of fire. The class Y capacitor is primarily used in line-to-ground (line by-pass) applications. In this application, failure of the capacitor could lead to danger of electric shock. With a working voltage of 440 VAC in line-to-line (Class X) and 300 VAC in line-to-ground (Class Y) applications, these safety capacitors meet the impulse test criteria outlined in IEC Standard 60384. Meeting subclass X1 and Y2 requirements, these devices are certified to withstand impulses up to 4 KV (X1) and 5 KV (Y2) respectively. These encapsulated devices also meet the flame test requirements outlined in UL Standard 94V–0.

Electronic Components

Ordering Information

C 9	7	1	U	472	М	Z	w	D	Α	Α	7317
Ceramic Series	Body Diameter	Lead Spacing ^{1,3}	Spec.	Capacitance Code (pF)	Capacitance Tolerance	Rated Voltage	Dielectric/ Temp. Char.	Design	Lead Config. ^{2,3}	Failure Rate	Packaging (C-Spec) ^{2,3}
C9 = Ceramic 900 Series	0 = 7.0 mm 1 = 8.0 mm 2 = 9.0 mm 3 = 10.0 mm 4 = 11.0 mm 6 = 13.0 mm 8 = 15.0 mm	7 = 7.5 mm 1 = 10.0 mm	U = Safety	2 significant digits + Number of zeroes Use 9 for 1.0 - 9.9 pF e.g., 2.2 pF = 229	C = ±0.25 pF D = ±0.5 pF J = ±5% K = ±10% M = ±20%	Z = X1 440 VAC / Y2 300 VAC	N = CH (NP0) S = SL Y = Y5P W = Y5U V = Y5V	D = Disc	A = Straight B = Vertical Kink C = Outside Kink D = Inside Kink	A = N/A	7317 = Ammo Pack WL30 = Bulk/3.0 mm Lead length WL35 = Bulk/3.5 mm Lead length WL40 = Bulk/4.0 mm Lead length WL45 = Bulk/4.5 mm Lead length WL50 = Bulk/5.0 mm Lead length WL20 = Bulk/20 mm Lead length

¹ Capacitor body diameter will limit available lead spacing and packaging options. See "Dimensions" and "Product Ordering Codes and Ratings" sections of this document to determine availability.

² "Vertical Kink", "Outside Kink" and "Inside Kink" lead configurations cannot be combined with the bulk/20 mm lead length option (WL20). 20 mm lead length is only available on capacitors with straight leads (lead configuration ordering code "A"). For nonstandard lead length inquiries, please contact KEMET.

³ Bulk packaging lead length availability is dependent upon "Lead Configuration" and "Lead Spacing." See "Dimensions" section of this document to verify availability of a specific lead length option. For nonstandard lead length inquiries, please contact KEMET.

One world. One KEMET

Lead Configurations

Straight	Vertical Kink	Outside Kink	Inside Kink	
	D max T max 4 max 0 d F L L L L	D max D max 5.0 max D max 5.0 max L L L	D max D max 5.0 max C L L L L L	

Dimensions – Millimeters

	Lead	F	Lead		L	Packaging	D	Т	е	Ød
Lead Config.	Config. Ordering Code ¹	Lead Spacing ²	Spacing Tolerance	Packaging Type ²	Lead Length	C-Spec Ordering Code ³	Body Diameter ²	Body Diameter ² Body Thickness		Lead Dia.
				Ammo Pack	20.0 +1.5/-1.0	7317				
	7.5 Straight A	75	.10		3.0 ±1.0	WL30	_		3.0 maximum	
		7.5	±1.0	Bulk	4.5 ±1.0	WL45	_			
Otroiaht					5.0 ±1.0	WL50		1 - "Product		0.5 ±0.1
Straight		10.0	±1.0	Ammo Pack	20.0 +1.5/-1.0	7317		Codes and ings"		
				Bulk	3.0 ±1.0	WL30	-			
					4.5 ±1.0	WL45				
					5.0 ±1.0	WL50	-			
				Ammo Pack	18.0 +2.0/-0	7317				
		7.5	±1.0	Dulle	3.5 ±1.0	WL35	-			
Vertical Kink	P			Bulk	4.0 ±1.0	WL40		1 - "Product	3.0	05.04
(Preformed)		10.0	±1.0	Ammo Pack	18.0 +2.0/-0	7317		Codes and ings"	maximum	0.5 ±0.1
					3.5 ±1.0	WL35				
				Bulk	4.0 ±1.0	WL40				

¹ Lead Configuration is identified in the 13th character of the ordering code. See "Lead Configuration" and "Ordering Information" sections of this document for further details.

² Body diameter of capacitor will limit available lead spacing and packaging options. See "Product Ordering Codes and Ratings" sections of this document for further details.

³ The "Packaging C-Spec" is a 4-digit numeric or alphanumeric code which identifies both the packaging type and lead length requirement. When ordering, this code must be included in the 15th through 18th character positions of the ordering code. See "Ordering Information" section of this document for further details.

Dimensions – Millimeters cont'd

	Lead	F	Lead		L	Packaging	D	Т	е	Ød
Lead Config. Config. Ordering Code ¹	Lead Spacing ²	Spacing Tolerance	Packaging Type ²	Lead Length	C-Spec Ordering Code ³	Body Diameter ²	Body Thickness	Lead Meniscus	Lead Dia.	
				Ammo Pack	18.0 +2.0/-0	7317				
		7.5	±1.0		3.5 ±1.0	WL35			3.0 maximum	
		7.5	±1.0	Bulk	4.0 ±1.0	WL40	-			0.5 ±0.1
Outside Kink	С			-	5.0 ±1.0	WL50		1 - "Product		
(Preformed)	U	10.0	±1.0	Ammo Pack	18.0 +2.0/-0	7317		Codes and ings"		
				Bulk	3.5 ±1.0	WL35	-			
					4.0 ±1.0	WL40				
					5.0 ±1.0	WL50				
		7.5		Ammo Pack	18.0 +2.0/-0	7317				
Inside Kink	D	7.5		Bulk	3.5 ±1.0	WL35	13.0	7.0	3.0	05.01
(Preformed)	U		±1.0	Ammo Pack	18.0 +2.0/-0	7317	maximum	maximum	maximum	0.5 ±0.1
		10.0		Bulk	3.5 ±1.0	WL35				

¹ Lead Configuration is identified in the 13th character of the ordering code. See "Lead Configuration" and "Ordering Information" sections of this document for further details.

² Body diameter of capacitor will limit available lead spacing and packaging options. See "Product Ordering Codes and Ratings" sections of this document for further details.

³ The "Packaging C-Spec" is a 4-digit numeric or alphanumeric code which identifies both the packaging type and lead length requirement. When ordering, this code must be included in the 15th through 18th character positions of the ordering code. See "Ordering Information" section of this document for further details.

Benefits

- Safety Standard Recognized (IEC 60384-14)
- Reliable operation up to 125°C
- Class X1/Y2
- 7.5 mm and 10 mm lead spacing
- · Lead (Pb)-free and RoHS Compliant
- Halogen Free
- Capacitance offerings ranging from 2.0 pF up to 10,000 pF
- Available capacitance tolerances of ± 0.25 pF, ± 0.5 pF, $\pm 5\%$, $\pm 10\%$, and $\pm 20\%$
- · High reliability
- · Preformed (crimped) or straight lead configurations
- · Non-polar device, minimizing installation concerns
- Encapsulation meets flammability standard UL 94V-0

Applications

Typical applications include:

- Line-to-line (Class X) filtering
- Line-to-ground (Class Y) filtering
- Antenna coupling
- Primary and secondary coupling (switching power supplies)
- · Line disturbances suppression (motors and motor controls, relays, switching power supplies, and inverters)

Approval Standard and Certification No.

Safety Standard	Standard No.	Subclass	Working Voltage	Certificate No.
VDE	IEC 60384–14	X1	440 VAC	40036415
(ENEC)	IEC 00304-14	Y2	300 VAC	40030415

These devices are VDE/ENEC recognized for antenna coupling and AC line-to-line (Class X) and line-to-ground (Class Y) applications per IEC60384–14.

Environmental Compliance

These devices are Halogen Free and RoHS Compliant. They meet all requirements set forth by both EU and China RoHS directives.

General Specifications/Performance Characteristics

Dielectric/Temperature Characteristic:	CH(NP0)	SL	Y5P	Y5U	Y5V
Operating Temperature Range			-40°C to +125°C	;	
Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC)	±60 ppm/°C	-1,000 ~ +350 ppm/°C	±10%	+20%/-55%	~ +30%/-80%
Dielectric Withstanding Voltage (7.5 mm and 10 mm Lead Spacing)	2,600 VAC (60 ±5 seconds at 25°C)				
Quality Factor (Q)		30 pF% and above: \geq 1,000 Below 30 pF: \geq 400 +(20 x C)*			ctor"
Dissipation Factor (tanδ) at +25°C1	See "Qua	lity Factor"	2.50%	2.50%	5.0%
Insulation Resistance (IR) Limit at +25°C),000 MΩ Minimu lied for 60 ±5 see		

*C = Nominal capacitance

² Capacitance and Dissipation Factor (DF) measured under the following conditions:

CH(NP0) & SL: 1 MHz \pm 100 kHz and 1.0 \pm 0.2 Vrms

X5P, Y5U and Y5V: 1 kHz \pm 50 Hz and 1.0 ± 0.2 Vrms

Note: When measuring capacitance, it is important to ensure the set voltage level is held constant. The HP4284 & Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

Table 1 – Product Ordering Codes and Ratings

Dielectric/				Din	nensions (mn	ו)	Lead S	pacing
Temp. Char.	KEMET Part Number	Capacitance	Capacitance Tolerance	Body Diameter (Maximum)	Body Thickness (Maximum)	Lead Diameter	Bulk Packaging	Ammo Packaging
	C90(1)U209CZND(2)A(3)	2.0 pF						
	C90(1)U309CZND(2)A(3)	3.0 pF	±0.25 pF					
	C90(1)U409CZND(2)A(3)	4.0 pF						
	C90(1)U509CZND(2)A(3)	5.0 pF		7.0				
	C90(1)U609DZND(2)A(3)	6.0 pF						
	C90(1)U709DZND(2)A(3)	7.0 pF	±0.5 pF	7.0				
	C90(1)U809DZND(2)A(3)	8.0 pF	±0.5 pF					
	C90(1)U909DZND(2)A(3)	9.0 pF						
	C90(1)U100DZND(2)A(3)	10 pF 12 pF					7.5	
СН		12 pF 15 pF			5.0	0.5 ±0.1	7.5 0	
(NP0)	C90(1)U150JZND(2)A(3) C91(1)U180JZND(2)A(3)	15 pF 18 pF			5.0	0.5 ±0.1	10 1	
	C91(1)U200JZND(2)A(3)	20 pF					101	
	C91(1)U220JZND(2)A(3)	20 pF 22 pF		8.0				
	C91(1)U240JZND(2)A(3)	22 pF 24 pF						
	C92(1)U270JZND(2)A(3) C92(1)U270JZND(2)A(3) C92(1)U300JZND(2)A(3)	24 pi 27 pF	±5%					
		30 pF		9.0				
	C92(1)U330JZND(2)A(3)	33 pF						
	C93(1)U360JZND(2)A(3)	36 pF						
	C93(1)U390JZND(2)A(3)	39 pF		10.0				
	C94(1)U470JZND(2)A(3)	47 pF		11.0				
		11 pi		11.0				
	C90(1)U100JZSD(2)A(3)	10 pF						
	C90(1)U120JZSD(2)A(3)	12 pF						
	C90(1)U150JZSD(2)A(3)	15 pF						
	C90(1)U180JZSD(2)A(3)	18 pF						
	C90(1)U200JZSD(2)A(3)	20 pF						
	C90(1)U220JZSD(2)A(3)	22 pF						
	C90(1)U240JZSD(2)A(3)	24 pF						
	C90(1)U270JZSD(2)A(3)	27 pF		7.0				
	C90(1)U300JZSD(2)A(3)	30 pF						
	C90(1)U330JZSD(2)A(3)	33 pF					7.5	
SL	C90(1)U360JZSD(2)A(3)	36 pF	±5%		5.0	0.5 ±0.1	0	-
	C90(1)U390JZSD(2)A(3)	39 pF					10 ו	mm
	C90(1)U470JZSD(2)A(3)	47 pF						
	C90(1)U500JZSD(2)A(3)	50 pF						
	C90(1)U510JZSD(2)A(3)	51 pF						
	C91(1)U560JZSD(2)A(3)	56 pF						
	C91(1)U620JZSD(2)A(3)	62 pF		8.0				
	C91(1)U680JZSD(2)A(3)	68 pF						
	C91(1)U750JZSD(2)A(3) C92(1)U820JZSD(2)A(3)	75 pF 82 pF		9.0				
	C92(1)U820JZSD(2)A(3) C93(1)U101JZSD(2)A(3)	02 pF 100 pF		10.0				
	033(1)0101323D(2)A(3)	100 pi		10.0				
	KEMET Part Number	Capacitance	Capacitance Tolerance	Body Diameter (Maximum)	Body Thickness (Maximum)	Lead Diameter	Lead S	pacing

(1) To properly complete ordering code, insert the one-digit numeric code to reflect required lead spacing: (Note that select capacitance values and packaging options may limit lead spacing availability. See table above to verify availability.)

7 = 7.5 mm

1 = 10.0 mm

(2) To properly complete ordering code, insert the one-digit character code to reflect the required lead configuration: (See "Lead Configuration" section of this document, page 2, for further details.)

A = Straight

- B = Vertical Kink
- C = Outside Kink
- D = Inside Kink

(3) To properly complete ordering code, enter the four-digit numeric or alphanumeric "Packaging C-Spec Ordering Code." See "Dimensions" section of this document, page 2, for available options.

Table 1 – Product Ordering Codes and Ratings cont'd

Dielectric/				Din	nensions (mn	ו)	Lead S	pacing
Temp. Char.	KEMET Part Number	Capacitance	Capacitance Tolerance	Body Diameter (Maximum)	Body Thickness (Maximum)	Lead Diameter	Bulk Packaging	Ammo Packaging
	C90(1)U101KZYD(2)A(3)	100 pF						
	C90(1)U151KZYD(2)A(3)	150 pF						
	C90(1)U221KZYD(2)A(3)	220 pF		7.0				
	C90(1)U331KZYD(2)A(3)	330 pF					7.5	
Y5P	C90(1)U471KZYD(2)A(3)	470 pF	±10%		5.0	0.5 ±0.1		r
	C91(1)U561KZYD(2)A(3)	560 pF		8.0			10 mm	
	C91(1)U681KZYD(2)A(3)	680 pF						
	C92(1)U821KZYD(2)A(3)	820 pF		9.0				
	C92(1)U102KZYD(2)A(3)	1,000 pF						
	C90(1)U102MZWD(2)A(3)	1,000 pF	r	7.0	1			
	C92(1)U152MZWD(2)A(3)	1,500 pF					7.5 mm or 10 mm	7.5 mm or 10 mm
	C92(1)U222MZWD(2)A(3)	2,200 pF		9.0		0.5 ±0.1		
Y5U	C94(1)U332MZWD(2)A(3)	3,300 pF	±20%	11.0	5.0			
	C96(1)U392MZWD(2)A(3)	3,900 pF						
	C96(1)U472MZWD(2)A(3)	4,700 pF		13.0				10 mm only
		· · · ·			•	•		
	C90(1)U102MZVD(2)A(3)	1,000 pF						
	C90(1)U152MZVD(2)A(3)	1,500 pF		7.0				
	C90(1)U222MZVD(2)A(3)	2,200 pF						7.5 mm or 10 mm
Y5V	C92(1)U332MZVD(2)A(3)	3,300 pF	±20%	9.0	5.0	0.5 ±0.1	7.5 mm or 10 mm	
100	C94(1)U392MZVD(2)A(3)	3,900 pF	±20%	11.0	5.0	0.5 ±0.1		
	C94(1)U472MZVD(2)A(3)	4,700 pF						
	C96(1)U682MZVD(2)A(3)	6,800 pF		13.0				10 mm only
	C98(1)U103MZVD(2)A(3)	10,000 pF		15.0	l			TO HILL OILY
						ř.		
	KEMET Part Number	Capacitance	Capacitance Tolerance	Body Diameter (Maximum)	Body Thickness (Maximum)	Lead Diameter	Lead S	pacing

(1) To properly complete ordering code, insert the one-digit numeric code to reflect required lead spacing: (Note that select capacitance values and packaging options may limit lead spacing availability. See table above to verify availability.)

7 = 7.5 mm

1 = 10.0 mm

(2) To properly complete ordering code, insert the one-digit character code to reflect the required lead configuration: (See "Lead Configuration" section of this document, page 2, for further details.)

- A = Straight
- B = Vertical Kink
- C = Outside Kink
- D = Inside Kink

(3) To properly complete ordering code, enter the four-digit numeric or alphanumeric "Packaging C-Spec Ordering Code." See "Dimensions" section of this document, page 2, for available options.

Table 2 – Performance & Reliability: Test Methods and Conditions

Ite	m	Specif	ication		Test Meth	nod			
Operating Temp	perature Range			-40°C to +125°C)				
	Between lead wires	No fa	ilures	The capacitor shall not be damaged when 2,600 VAC(rms) is applied between the lead wires for 60 seconds.					
Dielectric Strength	Body Insulation	No fa	ilures	be connected toget wrapped around the distance of about 3 The capacitor is the filled with metal ball diameter. 2,600 VA	s) of the capacitor sh her. A metal foil is tig body of the capacit to 4 mm from each t in inserted into a con s approximately 1 m C(rms) is applied for ne capacitor lead win	htly or at a erminal. Itainer m in 60	Metal Foil Construction Constru		
Insulation Re	sistance (IR)	10,000 MG	Ω minimum	The insulation resis after 60 ±5 seconds		ured with 5	00 ±50 VDC applied		
Сарас	itance	Within specif	fied tolerance						
		Temperature Characteristics	Specification						
		Y5P, Y5U	DF ≤ 2.5%	Y5P, Y5U and Y5V: Capacitance is measured at 1 kHz ±20% and 5					
Dissipation Fa	ctor (DF) or Q	Y5V	DF ≤ 5.0%	 Vrms or less. (20 ±2°C) NP0 and SL: Capacitance is measured at 1 MHz ±20% and 1.0 ±0.2 Vrms (25°C) 					
5.00,pailor 1 a		NP0,SL	≥ 30 pF: Q ≥ 1000 < 30 pF: Q ≥ 400 +(20 x C) C = Nominal capacitance						
				A capacitance mea	surement is made at	each step	specified:		
		Temperature Characteristics	Capacitance Change	Step	Temperature +20 ±2°C				
		Y5P	Within ±10%	2	-25 ±2°C				
Temperature C	Characteristics	Y5U	Within +20%/-55%	3	+20 ±2°C				
		Y5V	Within ~+30%/-80%	4	+85 ±2°C				
		СН	0 ±60 ppm/°C	5	+20 ±2°C				
		SL	-1,000 ~+350 ppm°C (+20°C ~+85°C)	Pre-treatment: Capacitor is stored condition ¹ for 24 ±2	at 85 ±2°C for 1 hou hours before measu	r and then irement.	placed at room		
	Tensile	Lead wire or capacito	r body shall not break.	With the termination in its normal position, the specimen is held by its body in such a manner that the axis of the termination is vertical; a tensile force of 10 N is applied to the termination in the direction of its axis and acting in a direction away from the body of the specimen.					
Terminal Strength	Bending	Lead wire or capacito	r body shall not break.	With the termination body in such a man mass force of 5 N is The body of the spe seconds, through a and then resumed t this operation const	n in its normal positic ner that the axis of the sthen suspended fro ccimen is then incline n angle of approxima o its initial position o itutes one bend. One	on, the spectrum one terminat one terminat one terminat one termination one te	cimen is held by its ion is vertical; a of the termination. period of 2 to 3 the vertical plane		
Solder	ability	solder in the axial dire	e a uniform coating of ction and over 3/4 of its ference.	a second bend in the opposite direction. The lead wire of the capacitor is dipped into molten solder for 2 ± 0.5 seconds. The depth of immersion is up to 1.5 mm (+5/-0 mm) from the root of lead wires. Solder Temperature: Lead free solder (Sn-3Ag – 0.5Cu) 245°C ±5°C.					

Table 2 – Performance & Reliability: Test Methods and Conditions cont'd

lte	m	Specif	ication	Test N	lethod			
_	Appearance	No visu	al defect	As shown in the figure below, the le solder up to 1.5 mm (+5/-0 mm) fror				
	IR	1,000) ΜΩ	(root of lead wire). Duration/Solder Temperature: 3.5 ± seconds/260°C ±5°C	0.5 seconds/350°C ±10°C or 10 ±1			
	Dielectric Strength	Perit	tem 1	Thermal Capacitor				
Soldering Effect (Non-Preheat)	Capacitance	SL, CH (NP0): Within	5V: Within ±10% n ±2.5% or ±0.25 pF, r is larger.	Screen to 2.0mm Solder Pre-treatment: Capacitor is stored at 85°C ±2°C for 1 hour and then placed at room condition ¹ for 24 ±2 hours before initial measurements. Post-treatment: Capacitor is stored for 1 to 2 hours at room condition ¹ .				
	Appearance	No visua	al defect	Capacitor is stored at 120°C +0/-5°	C for 60 +0/-5 seconds. Then, as			
-	IR	1,000) ΜΩ	up to 1.5 mm (+5/-0mm) from the er	wires are immersed in molten solder nd of the epoxy meniscus (root of			
-	Dielectric Strength	Peri	tem 1	lead wire). Duration/Solder Temperature: 7.5 +	0/-1 seconds/260°C ±5°C			
Soldering Effect (Preheat)	Capacitance	SL, CH (NP0): Within	5V: Within ±10% n ±2.5% or ±0.25 pF, r is larger.	Thermal Screen, I.5 to 2.0mm Nolten Solder Pre-treatment: Capacitor is stored at 85°C ±2°C for 1 hour and then placed at room condition ¹ for 24 ±2 hours before initial measurements. Post-treatment: Capacitor is stored for 1 to 2 hours at room condition				
	Appearance	No visu	al defect	Steady State Humidity:	Load Humidity:			
-		Temperature Characteristics Y5P	Capacitance Change Within ±10%					
		Y5P Y5U	Within $\pm 10\%$ Within $\pm 20\%$					
	Capacitance	Y5V	Within ±30%					
Biased Humidity		SL CH (NP0)	Within ±2.5% or ±0.25 pF, whichever is larger.	90 to 95% humidity at 40°C ±2°C for 500 ±12 hours. Post Treatment:	90 to 95% humidity at 40°C ±2°C for 500 ±12 hours with full rated voltage applied.			
_	DF		5.0% maximum maximum	Capacitor is stored for 1 to 2 hours at room condition ¹ .	Post Treatment: Capacitor is stored for 1 to 2 hours at room condition ¹ .			
-	Q	SL and CH(NP0): Q ≥ 100 - More than 30	Less than 30 pF: $10 \times C/3$ $pF: Q \ge 200$ capacitance					
-	IR	Y5P, Y5V and Y5U:	$3,000 \text{ M}\Omega \text{ minimum}$ $1,000 \text{ M}\Omega \text{ minimum}$					
_	Dielectric Strength	No fa	ilures					

Table 2 – Performance & Reliability: Test Methods and Conditions cont'd

lte	m	Specification	Test Method					
High Temperature Life	Appearance Capacitance Change IR Dielectric Strength	No visual defect Y5P, Y5V and Y5U: Within ±20% SL and CH (NP0): Within ±3 or ±0.3 pF, whichever is larger. 3,000 MΩ minimum SL and CH (NPO): 1,000 MΩ minimum No failures	Impulse Voltage: Each individual capacitor is subjected to three 5 kv impulses prior to life testing.					
Flame	Test	Cycle Time 1 ~ 4 30 seconds maximum 5 60 seconds maximum	ishes as follows: me s maximum					
Active Flammability		The cheesecloth should not ignite.	The capacitors are individually wrapped in at least one, but not more than two, complete layers of cheesecloth. They are then subjected to 20 discharges. The interval between successive discharges is 5 seconds. The VAC is maintained for 2 minutes after the last discharge. $\overbrace{I_1^{I_1} I_2^{I_2} I_4^{I_2} I_4^{I_2} I_4^{I_2} I_4^{I_2} I_5^{I_2} I_4^{I_2} I_5^{I_2} I_6^{I_2} I_6^{I_2}$					

Table 2 – Performance & Reliability: Test Methods and Conditions cont'd

lte	em	Specifi	cation			Test Method		
Passive Flammability		The burning time sh seco The tissue paper	The capacitor under test is held into a flame and in a position which best promotes burning. Each specimen is exposed to the flame one time.					
	Appearance	No visua						
	Capacitance	Temperature Characteristics SL, CH (NP0)	Capacitance Change Within ±5%	The capacitor is subjected to 5 temperature cycles.				
		Y5P Y5U, Y5V	Within ±10% Within ±20%		Step	Temperature (°C)	Time (minutes)	
Temperature		SL, CH (NP0)	≥ 30 pF: Q ≥ 350		1	-40 +0/-3	30	
Cycle			< 30 pF: Q ≥ 275		2	Room temperature	3	
			+5/2C C = Nominal		3	125 +3/-0	30	
	DF/Q		capacitance		4	Room temperature	3	
		Y5P	DF ≤ 5%					
		Y5U, Y5V			tment: Cap t room cond	acitor shall be stored at 85 $ition^1$ for 24 ±2 hours.	5 ± 2 for 1 hour the	en adition1
	IR	3,000 MΩ	minimum	Post-tre	aunent: Ca	pacitor is stored for 1 to 2	nours at room col	nultion'.
	Dielectric Strength	No fa	lures					

Soldering and Mounting Information

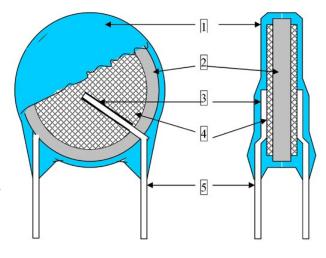
Soldering:

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could reflow the solder joint between the lead and ceramic element and/or may result in thermal shocks that can crack the ceramic element.

When soldering these capacitors with a soldering iron, it should be performed under the following conditions:

- Temperature of iron-tip: 400°C maximum
- Soldering iron wattage: 50 W maximum
- · Soldering time: 3.5 seconds maximum

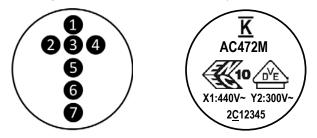
Cleaning (ultrasonic cleaning):


To perform ultrasonic cleaning, observe the following conditions:

- · Rinse bath capacity: Output of 20 watts per liter or less
- · Rinsing time: 5 minute maximum
- Do not vibrate the PCB/PWB directly
- · Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires

Construction

Reference	ltem	Material
1	Encapsulation ¹	Epoxy resin, Pigment (Blue/UL 94 V-0)
2	Dielectric Material	BaTiO ₃
3	Solder	Sn 96.5, Ag 3, Cu 0.5
4	Electrodes	Ag (Glass frit)
5	Lead Wires	Tinned copper clad steel wire (Sn Plating 100% 3-7 µm)

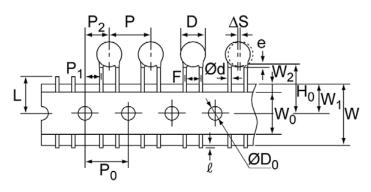

¹ The minimum thickness of the insulation coating (encapsulation) is 0.4 mm Note: Image is exaggerated in order to clearly identify all components of construction.

Capacitor Marking

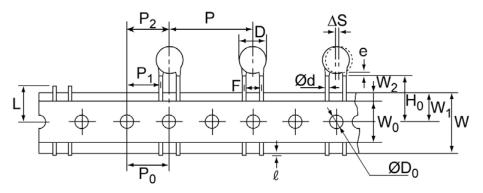
These capacitors shall be stamped or laser marked with KEMET's trademark, type designation, capacitor class, rated voltage, rated capacitance, and capacitance tolerance codes. In addition, all devices are marked with the recognized approval mark and a date/lot code for traceability. Marking will be supplied either on one side or both sides of the encapsulated capacitor body. All marking shall be legible to allow for clear identification of the component. Marking appears in legible contrast. Illustrated below is an example of the marking format and content. (Two sided marking is limited to capacitors with body diameters ≤ 8.0 mm.)

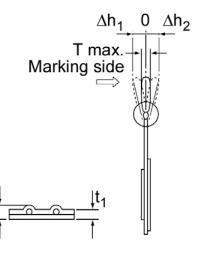
Location #	Description		Detail		
1	KEMET Trademark	<u>K</u>			
2	Type Designation (2 characters)	AC			
8	Rated Capacitance (3 numeric characters)	First two digits are the significant figures of capacitance. Third digit indicates th number of zeros. For example, 4,700 pF is identified as 472. (For values below 10 used in place of the decimal point, e.g., 2R0 = 2.0 pF.)		s below 10 pF an "R" is	
4	Capacitance Tolerance Code (1 character)	C = 0.25 pF, D = 0.5 pF, J = ±5%, K = ±10%, M = ±20%		0%	
6	VDE & ENEC approval mark IEC 60384–14 3rd (2005)				
6	Capacitor Class and Rated Voltage	X1: 440 V ~ Y2: 300 V ~			
			Date/Lot Co	de, e.g., 3 <u>C</u> 12345	
		3	<u>C</u>	1	2345
	Date/Lot Code	Last digit of year, e.g., 3 = 2013	Manufacturing Location Code	Manufacturing Month: 1-9 = Jan - Sept A = October N = November D = December	Last 4 digits of lot no.

Packaging Quantities


Deckening Trees		Carrier Tape Quantity				
Packaging Type	Loose (Bulk Bag)	(12.7 mm Pitch ¹)	(15 mm Pitch ¹)	(25.4 mm Pitch ¹)		
Ammo Pack	N/A	1,000 pieces/box		500 pieces/box		
Bulk	500 pieces/bag	N/A				

¹ For details regarding component pitch on carrier tape, see "Ammo Pack Taping Format" and "Ammo Pack Taping Specifications" sections of this document.




Figure 1 - Ammo Pack Taping Format

5 mm and 7.5 mm Lead Spacing:

10 mm Lead Spacing:

Table 3 – Ammo Pack Taping Specifications

Lead Spacing		5 mm		7.5 mm		10 mm		
Lead Style		Straight	Preformed ¹	Straight	Preformed ¹	Straight	Preformed ¹	
Item	Symbol	Dimensio		ons (mm)				
Lead Spacing	F	5.0 +0	0.8/-0.2	7.5 ±1.0		10.0 ±1.0		
Component Pitch	Р	12.7		15.0		25.4 ±2		
Sprocket Hole Pitch	P ₀	12.7 ±0.3		15.0 ±0.3		12.7 ±0.3		
Sprocket Hole Center to Component Center	P ₂	6.35 ±1.5		7.5 ±1.5		12.7 ±1.5		
Sprocket Hole Center to Lead Center	P ₁	3.75 ±1.0		3.75 ±1.0		7.7 ±1.5		
Body Diameter	D	See "Product Ordering Codes and Ratings" section of this documen		of this document.				
Component Alignment (side/side)	ΔS		(-2.0			
Carrier Tape Width	W			18.0 +1.0/-0.5				
Sprocket Hole Position	W ₁			9.0 ±0.5		9.0 ±0.5		

¹Prefromed (crimped) lead configurations include vertical kink, outside kink and inside kink. See "Lead Configurations" and "Ordering Information" sections of this document for further details.

²Also referred to as "lead length" in this document.

Table 3 – Ammo Pack Taping Specifications cont'd

Lead Spacing		5 mm		7.5	7.5 mm		10 mm	
Lead Style		Straight	Preformed ¹	Straight	Preformed ¹	Straight	Preformed ¹	
Item	Symbol			Dimensi	ons (mm)			
Height to Seating Plane ² (preformed leads ¹)	H_0	N/A	18.0 +2.0/-0	N/A	18.0 +2.0/-0	N/A	18.0 +2.0/-0	
Height to Seating Plane ² (straight leads)	Н	20.0 +1.5/-1.0	N/A	20.0 +1.5/-1.0	N/A	20.0 +1.5/-1.0	N/A	
Lead Protrusion	ł	2.0 maximum						
Diameter of Sprocket Hole	D ₀	4.0 ±0.2						
Lead Diameter	φd	0.5 ±0.1						
Carrier Tape Thickness	t,	0.6 ±0.3						
Total Thickness (Carrier Tape, Hold-Down Tape and Lead)	t ₂	1.5 maximum						
Component Alignment (front/back)	$\Delta h_1^{}$ $\Delta h_2^{}$	2.0 maximum		2.0 maximum				
Cut Out Length	L	11.0 maximum						
Hold-Down Tape Width	W ₀	11.0 minimum 11.5 minimum		inimum				
Hold-Down Tape Position	W ₂	3.0 ma	naximum 1.5 ±1.5					

¹Prefromed (crimped) lead configurations include vertical kink, outside kink and inside kink. See "Lead Configurations" and "Ordering Information" sections of this document for further details.

²Also referred to as "lead length" in this document.

Application Notes:

Storage and Operating Conditions:

The insulating coating of these devices does not form an air and moisture-tight seal. Avoid exposure to moisture and do not use or store these devices in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt, or the like are present. Before cleaning, bonding or molding these devices, it is important to verify that your process does not affect product quality and performance. KEMET recommends testing and evaluating the performance of a cleaned, bonded or molded product prior to implementing and/or qualifying any of these processes. Store the capacitors where the temperature and relative humidity do not exceed 40 degrees Centigrade and 70% respectively. For optimum solderability, capacitor stock should be used promptly, preferably within 6 months of receipt.

Working Voltage:

Application voltage (Vp-p or Vo-p) must not exceed the voltage rating of the capacitor. Irregular voltages can be generated for a transient period of time when voltage is initially applied and/or removed from a circuit. It is important to choose a capacitor with a voltage rating greater than or equal to these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	vp-p	vp-p	vp-p

Operating Temperature and Self-Generating Heat:

The surface temperature of a capacitor should be kept below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high-frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. Temperature rise due to self-generated heating should not exceed 20°C (while operated at an atmosphere temperature of 25°C).

Handling - Vibration and Impact:

Do not expose these devices or their leads to excessive shock or vibration during use.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

KEMET Corporation World Headquarters

2835 KEMET Way Simpsonville, SC 29681

Mailing Address: P.O. Box 5928 Greenville, SC 29606

www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

Corporate Offices

Fort Lauderdale, FL Tel: 954-766-2800

North America

Southeast Lake Mary, FL Tel: 407-855-8886

Northeast Wilmington, MA Tel: 978-658-1663

Central Novi, MI Tel: 248-994-1030

West Milpitas, CA Tel: 408-433-9950

Mexico Guadalajara, Jalisco Tel: 52-33-3123-2141

Europe

Southern Europe Paris, France Tel: 33-1-4646-1006

Sasso Marconi, Italy Tel: 39-051-939111

Central Europe Landsberg, Germany Tel: 49-8191-3350800

Kamen, Germany Tel: 49-2307-438110

Northern Europe Bishop's Stortford, United Kingdom Tel: 44-1279-460122

Espoo, Finland Tel: 358-9-5406-5000

Asia

Northeast Asia Hong Kong Tel: 852-2305-1168

Shenzhen, China Tel: 86-755-2518-1306

Beijing, China Tel: 86-10-5829-1711

Shanghai, China Tel: 86-21-6447-0707

Taipei, Taiwan Tel: 886-2-27528585

Southeast Asia Singapore Tel: 65-6586-1900

Penang, Malaysia Tel: 60-4-6430200

Bangalore, India Tel: 91-806-53-76817

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.

© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com C1065_X1_440 VAC_Y2_300 VAC • 10/11/2013 17

Other KEMET Resources

То	ols
Resource	Location
Configure A Part: CapEdge	http://capacitoredge.kemet.com
SPICE & FIT Software	http://www.kemet.com/spice
Search Our FAQs: KnowledgeEdge	http://www.kemet.com/keask
Electrolytic LifeCalculator	http://www.kemet.com:8080/elc

Product Information		
Resource	Location	
Products	http://www.kemet.com/products	
Technical Resources (Including Soldering Techniques)	http://www.kemet.com/technicalpapers	
RoHS Statement	http://www.kemet.com/rohs	
Quality Documents	http://www.kemet.com/qualitydocuments	

Product	Request
Resource	Location
Sample Request	http://www.kemet.com/sample
Engineering Kit Request	http://www.kemet.com/kits

Con	tact
Resource	Location
Website	www.kemet.com
Contact Us	http://www.kemet.com/contact
Investor Relations	http://www.kemet.com/ir
Call Us	1-877-MyKEMET
Twitter	http://twitter.com/kemetcapacitors

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kemet:

C907U150JYSDAA7317 C907U150JYSDAAWL20 C907U150JYSDAAWL35 C907U150JYSDAAWL40
C907U150JYSDAAWL45 C907U150JYSDBA7317 C907U150JYSDBAWL20 C907U150JYSDBAWL35
C907U150JYSDBAWL40 C907U150JYSDBAWL45 C907U150JYSDCA7317 C907U150JYSDCAWL20
C907U150JYSDCAWL35 C907U150JYSDCAWL40 C907U150JYSDCAWL45 C907U150JZNDAA7317
C907U150JZNDAAWL20 C907U150JZNDAAWL35 C907U150JZNDAAWL40 C907U150JZNDAAWL45
C907U150JZNDBA7317 C907U150JZNDBAWL20 C907U150JZNDBAWL35 C907U150JZNDBAWL40
C907U150JZNDBAWL45 C907U150JZNDCA7317 C907U150JZNDCAWL20 C907U150JZNDCAWL35
C907U150JZNDCAWL40 C907U150JZNDCAWL45 C907U150JZSDAA7317 C907U150JZSDAAWL20
C907U150JZSDAAWL35 C907U150JZSDAAWL40 C907U150JZSDAAWL45 C907U150JZSDBA7317
C907U150JZSDBAWL20 C907U150JZSDBAWL35 C907U150JZSDBAWL40 C907U150JZSDBAWL45
C907U150JZSDCA7317 C907U150JZSDCAWL20 C907U150JZSDCAWL35 C907U150JZSDCAWL40
C907U150JZSDCAWL45 C907U152MYVDAA7317 C907U152MYVDAAWL20 C907U152MYVDAAWL35
C907U152MYVDAAWL40 C907U152MYVDAAWL45 C907U152MYVDBA7317 C907U152MYVDBAWL20
C907U152MYVDBAWL35 C907U152MYVDBAWL40 C907U152MYVDBAWL45 C907U152MYVDCA7317
C907U152MYVDCAWL20 C907U152MYVDCAWL35 C907U152MYVDCAWL40 C907U152MYVDCAWL45
<u>C907U152MZVDAA7317</u> <u>C907U152MZVDAAWL20</u> <u>C907U152MZVDAAWL35</u> <u>C907U152MZVDAAWL40</u>
C907U152MZVDAAWL45 C907U152MZVDBA7317 C907U152MZVDBAWL20 C907U152MZVDBAWL35
C907U152MZVDBAWL40 C907U152MZVDBAWL45 C907U152MZVDCA7317 C907U152MZVDCAWL20
C907U152MZVDCAWL35 C907U152MZVDCAWL40 C907U152MZVDCAWL45 C907U180JYSDAA7317
C907U180JYSDAAWL20 C907U180JYSDAAWL35 C907U180JYSDAAWL40 C907U180JYSDAAWL45
C907U180JYSDBA7317 C907U180JYSDBAWL20 C907U180JYSDBAWL35 C907U180JYSDBAWL40
C907U180JYSDBAWL45 C907U180JYSDCA7317 C907U180JYSDCAWL20 C907U180JYSDCAWL35
C907U180JYSDCAWL40 C907U180JYSDCAWL45 C907U180JZSDAA7317 C907U180JZSDAAWL20
C907U180JZSDAAWL35 C907U180JZSDAAWL40 C907U180JZSDAAWL45 C907U180JZSDBA7317
C907U180JZSDBAWL20 C907U180JZSDBAWL35 C907U180JZSDBAWL40 C907U180JZSDBAWL45